We study an important subclass of quasicircles, namely, symmetric quasicircles. Several characterizations for quasicircles, such as the reverse triangle inequality, the M -condition and the quasiconformal extension property, have been extended to symmetric quasicircles by Becker and Pommerenke and by Gardiner and Sullivan. In this paper we establish several relations among various domain constants such as quasiextremal distance constants, (local) reflection constants and (local) extension constants for this class. We also give several characterizations for symmetric quasicircles such as the strong quadrilateral inequality and the strong extremal distance property. They correspond to the quadrilateral inequality and the extremal distance property for quasicircles.1991 Mathematics subject classification (Amer. Math. Soc): primary 30C62, 3 lBxx.