Photocatalytic technology, which is regarded as a green route to transform solar energy into chemical fuels, plays an important role in the fields of energy and environmental protection. An emerging S-scheme heterojunction with the tightly coupled interface, whose photocatalytic efficiency exceeds those of conventional type II and Z-scheme photocatalysts, has received much attention due to its rapid charge carrier separation and strong redox capacity. This review provides a systematic description of S-scheme heterojunction in the photocatalysis, including its development, reaction mechanisms, preparation, and characterization methods. In addition, S-scheme photocatalysts for CO2 reduction are described in detail by categorizing them as 0D/1D, 0D/2D, 0D/3D, 2D/2D, and 2D/3D. Finally, some defects of S-scheme heterojunctions are pointed out, and the future development of S-scheme heterojunctions is proposed.