At present, silver nanowire transparent conductive films (AgNWs-TCFs) still have problems such as high resistance of AgNWs network nodes, uneven distribution of resistance and poor electrical performance stability, which restrict their commercial application. Different from chemical modification, in this paper, a method of modifying AgNWs-TCFs with metal oxide nanoparticles (MONPs) is proposed, that is, ZnO, SnO2, Al2O3 and TiO2 etc., four transparent metal oxides are used as targets respectively in a magnetron sputtering process, modifying the silver nanowire network wire–wire junctions and silver nanowire in AgNWs-TCFs using active MONPs generated by magnetron sputtering. A series of AgNWs@MONPs for the AgNWs@ZnO-TCFs, AgNWs@SnO2-TCFs, AgNWs@Al2O3-TCFs and AgNWs@TiO2-TCFs were obtained. A significant decrease in the resistance of AgNWs-TCFs through the modification of MONPs was shown. Respectively, the reduction of resistance was 75.6%, 70.4%, 53.2% and 59.8% for AgNWs@ZnO-TCFs, AgNWs@SnO2-TCFs, AgNWs@Al2O3-TCFs and AgNWs@TiO2-TCFs. Correspondingly, its non-uniformity of resistance distribution was 12.5% (18.2% before), 10.0% (17.1% before), 10.1% (24.3% before) and 10.6% (13.4% before), respectively, which markedly improved the uniformity of electrical property. Respectively, their failure voltages reach 16, 16, 15 and 16 (V), so accordingly, the electrical stability is considerably enhanced. In addition, the uniformity of temperature distribution was also significantly optimized with its temperature non-uniformity of 10.4%, 8.7%, 10.3% and 9.6%, respectively. Contrast that with AgNWs@MONPs, and the failure voltages and temperature non-uniformity of AgNWs-TCFs are 12 V and 40.6%.