Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, ␣ENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.circadian rhythm ͉ homeostasis ͉ renal function R ecent evidence suggests that many if not all specific physiological functions are under the control of the circadian timing system. The mammalian circadian timing system is a hierarchically organized network of molecular oscillators driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of hypothalamus. This central pacemaker functions in a self-sustained fashion, but is reset each day by exposure to environmental synchronizers, mainly the light/dark cycle. The SCN masterclock drives the rest-activity cycle, which in turn imposes the feeding pattern [reviewed in (1, 2)]. The feeding time seems to be the dominant cue for circadian rhythms in the peripheral tissues (3, 4). Central and peripheral oscillators share a similar molecular core clock based on a set of self-autonomous transcriptional/ translational feedback loops. The key molecular components of these loops are the PAS domain transcriptional factors CLOCK, BMAL1, and NPAS2 and the feedback repressors PER1, PER2, CRY1, and CRY2. The orphan nuclear receptors NR1D1 and, probably, NR1D2 form an accessory feedback loop. The core oscillators confer circadian rhythmicity on a set of output genes underlying the tissue-specific functional rhythms. Current estimates indicate that up to 10% of the cellular transcriptome may follow a circadian expression pattern (5-7). Several recent studies have also demonstrated that the transcription of only a minority of these circadian genes is driven by systemic humoral or neurona...