ABSTRACT:The expression of glutathione S-transferase (GST) is a crucial factor in determining the sensitivity of cells and organs in response to a variety of toxicants. In this study, we cloned the core nucleotide of alpha, kappa, mu, mGST, pi, rho, and theta-like GST genes from bighead carp (Aristichthys nobilis). Their derived amino acid sequences were clustered with other vertebrate GSTs in a phylogenetic tree, and the bighead carp GST sequences have the highest similarity with those from common carp and zebrafish. We quantified the constitutive mRNA transcription of GST isoforms in eight different tissues (liver, kidney, spleen, intestine, muscle, heart, brain, and gill). The information obtained from the present study could be distilled into a few generalized principles: multiple GST isoenzymes were ubiquitously expressed in all tissues; majority of GSTs had high constitutive expression in intestine, liver, and kidney. These findings are in agreement with the roles of these tissues in xenobiotic metabolism. At the same time, some unique findings were detected in the current experiment: (1) higher expression of most GSTs was observed in spleen; (2) the expression of GST pi was highest in almost all the studied tissues except muscle; the other two isoforms, GST alpha and rho, were also highly expressed in liver, kidney, intestine, spleen, heart, and brain of bighead carp. All these results strongly imply an important role of these GST isoforms in detoxification of ingested xenobiotics. C