A B S T R A C TCryptosporidium is an obligate intracellular protist parasite infecting a wide range of vertebrate hosts and causes significant intestinal disease in both animals and humans, as some species are zoonotic. Cattle and especially calves have been identified as one of the most common reservoirs of this protist. However, little is known about the genetics of Cryptosporidium in calves in some regions of France. The aim of this study was to detect and isolate Cryptosporidium spp. in faecal samples from naturally infected pre-weaned calves (≤45 days-old) in France. A total of 35 diarrhoeic pre-weaned calf faecal samples were collected from 26 dairy cattle farms in six departments (French administrative provinces). Cryptosporidium presence was established by microscopically screening samples for oocystes with an immunofluorescent (DFA) staining method. DFA-positive samples were then analysed by PCR-RFLP and 18S rRNA gene sequencing to determine species. Cryptosporidium parvum-positive samples were subtyped via nested PCR analysis of a partial fragment of the 60 kDa glycoprotein (gp60) gene product. Data were then integrated into phylogenetic tree analysis. DFA revealed the presence of Cryptosporidium oocysts in 31 out of 35 (88%) samples. Combined with 18S rRNA gene analysis results, C. parvum was detected in 30 samples. Subtyping analysis in 27/30 samples (90%) of the C. parvum isolates revealed two zoonotic subtype families, IIa (24/27) and IId (3/27). Four subtypes were recognised within the subtype family IIa, including the hypertransmissible IIaA15G2R1 subtype that is the most frequently reported worldwide (21/ 27), IIaA17G3R1 (1/27), IIaA17G1R1 (1/27), and IIaA19G1R1 (1/27). Two subtypes were recognised within the IId subtype family including IIdA22G1 (2/27) and IIdA27G1 (1/27). These findings illustrate the high occurrence of Cryptosporidium in calves in dairy herds and increase the diversity of molecularly characterised C. parvum isolates with the first description of IIaA17G3R1, IIaA19G1R1, and IId subtypes in France. The presence of zoonotic C. parvum subtype families (IIa, IId) in this study suggests that pre-weaned calves are likely to be a significant reservoir of zoonotic C. parvum, and highlights the importance of animal to human cryptosporidiosis transmission risk. Further molecular studies in calves and small ruminants from other French regions are required to better understand the epidemiology of cryptosporidiosis in France.However, due to strong inter-species similarities in microscopic size and shape, species within this genus require additional identification via genetic characterization. Molecular biology techniques have enabled the description of species that are highly host-specific, as well as others that are capable of infecting many hosts. Cryptosporidium parvum is considered to be the most prevalent species worldwide and a major zoonotic transmission risk (Xiao, 2010). Using molecular approaches to genetically characterise Cryptosporidium spp. has facilitated an