The green rice leafhopper, Nephotettix cincticeps, is a major rice pest in Southeast Asia and Southern China. Novel control strategies must be explored to control the rice pest. Behavior or fitness regulation of insect by modulating the Troponin C (TnC) may be a novel strategy in the comprehensive management of the insect pest. However, characterizations and functions of TnC, especially regarding effect of its RNA interference-mediated gene knockdown on the behavior or fitness of N. cincticeps remain unknown. Here, we successfully cloned and characterized TnC gene from N. cincticeps (Nc-TnC). We demonstrated that Nc-TnC ubiquitously transcribed at all development stages and special tissues in adult insects, with relative higher levels at the adult stage and in the intestinal canal. Microinjection- or oral membrane feeding-based transient knockdown of Nc-TnC adversely affected the performance or fitness, such as the decreased survival, feeding capacity, weight, and fecundity of N. cincticeps. Furthermore, we revealed that the expression of Nc-TnC was suppressed by its interaction with rice dwarf virus-encoded nonstructural protein 10, which ultimately affected detrimentally the corresponding parameters of the performance or fitness of N. cincticeps. In conclusion, our data deepen understanding of Nc-TnC functions during the development of and viral infection in N. cincticeps. It imply Nc-TnC may serve as a potential target for N. cincticeps control in future.