We have cloned and sequenced a novel Bombyx mori gene that encodes a protein having a high degree of homology with other known troponin C (TnC) proteins. The amino acid sequence, DX[DN]X[DSG]X 6 E, a highly conserved putative Ca 2+ -binding motif found in loops within the globular domains of previously identified TnC proteins, is also present in BmTnC. We have expressed and purified to homogeneity a His-tagged BmTnC fusion protein having a molecular weight of approximately 21.6 kDa. We have used this purified fusion protein to produce polyclonal antibodies against BmTnC for Western blot analyses. These analyses have revealed that BmTnC is expressed in the larval head, the Malpighian tubule, the epidermis, the testis, and the gut, as has been confirmed by immunohistochemistry. In addition, real-time reverse transcription/polymerase chain reaction has shown that BmTnC mRNA levels differ substantially among these tissues. Our findings indicate that BmTnC is selectively expressed in the muscular tissues of the silkworm, including portions of the head, the Malpighian tubule, the body wall, and the gut.
In this study, we identified a heat-resistant protein from the chrysalis stage of the silkworm which we named sex-specific storage protein 2 (SSP2). This protein was stable even at 80 °C, and has an amino acid sequence that is 90.65 % homologous to SP2. We utilized the heat-resistant characteristics of SSP2 to purify the protein and maintain its biological activity. In addition, using flow cytometry and the MTT assay, we found that SSP2 had anti-apoptotic effects on BmN cells, and that SSP2 could also inhibit cell apoptosis induced by chemical factors. These results suggest that SSP2 has a cell-protective function, and provides a basis for future work on the function of storage proteins in silkworm.
A novel cDNA sequence encoding a predicted protein of 271 amino acids containing a conserved NIF3 domain was found from a pupal cDNA library of silkworm. The corresponding gene was named BmNIF3l (Bombyx mori NGG1p interacting factor 3-like). It was found by bioinformatics that BmNIF3l gene consisted of five exons and four introns and BmNIF3l had a high degree of homology to other NIF3-like proteins, especially in the N-terminal and C-terminal regions. A His-tagged BmNIF3l fusion protein with a molecular weight of approximately 33.6 kDa was expressed and purified to homogeneity. We have used the purified fusion protein to produce polyclonal antibodies against BmNIF3l for histochemical analysis. Subcellular localization revealed that BmNIF3l is a cytoplasmic protein that responds to all-trans retinoic acid (ATRA). Western blotting and real-time reverse transcription polymerase chain reaction showed that the expression level of BmNIF3l is higher in tissues undergoing differentiation. Taken together, the results suggest that BmNIF3l functions in transcription.
Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.