High amounts of radionuclides were released into the environment by the nuclear power plant accident of 2011 in Japan. Among the radioactive material, cesium, iodine, and strontium were especially dangerous because of their biophilic characteristics that allowed them to accumulate in living organisms, either as essential elements for iodine or analogs of potassium and calcium for cesium and strontium, respectively. As a result, there was a high social demand for decontamination to avoid exposure to these elements. The authors screened around 200 strains of algae and plants for their ability to absorb radioactive nuclides. The eustigmatophycean algae Vacuoliviride crystalliferum and the cyanophytes Stigonema ocellatum and Nostoc commune showed the highest bioaccumulation activity for the removal of cesium, strontium, and iodine from the environment, respectively. In addition to these strains, the authors also found that the extremophilic unicellular red algae Galdieria sulphuraria could remove high levels of dissolved cesium from media in mixotrophic growth conditions. In this chapter, the intake mechanism of cesium, iodine, and strontium is reviewed. Recent findings on the absorption of these elements by algae are discussed to highlight the possibility of decontaminating polluted land and water at nuclear sites by phytoremediation.