2005
DOI: 10.1007/s10910-004-1466-4
|View full text |Cite
|
Sign up to set email alerts
|

Molecular conformation search by distance matrix perturbations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2011
2011
2012
2012

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 17 publications
0
1
0
1
Order By: Relevance
“…Other algorithmic developments followed, including: a divide-and-conquer algorithm called ABBIE based on identifying rigid substructures [72]; an alternating projection approach [58]; a global smoothing continuation code called DGSOL [93,94]; a geometric build-up algorithm [48,49,116,117]; an extended recursive geometric build-up algorithm [50]; a difference of convex functions (d.c.) optimization algorithm [15]; a method based on rank-reducing perturbations of the distance matrix that maintain desired structures [52]; an algorithm for solving a distance matrix based, large-scale, bound constrained, non-convex optimization problem called StrainMin [68].…”
Section: Molecular Conformationmentioning
confidence: 99%
“…Other algorithmic developments followed, including: a divide-and-conquer algorithm called ABBIE based on identifying rigid substructures [72]; an alternating projection approach [58]; a global smoothing continuation code called DGSOL [93,94]; a geometric build-up algorithm [48,49,116,117]; an extended recursive geometric build-up algorithm [50]; a difference of convex functions (d.c.) optimization algorithm [15]; a method based on rank-reducing perturbations of the distance matrix that maintain desired structures [52]; an algorithm for solving a distance matrix based, large-scale, bound constrained, non-convex optimization problem called StrainMin [68].…”
Section: Molecular Conformationmentioning
confidence: 99%
“…Для объемов многогранников в E n , n > 3, можно применить предложенный в разделе 16 метод вычисления их объема с использованием длин диагоналей и тем самым установить некоторую алгебраическую связь объема с длинами ребер и диагоналей, а потом попытаться исключить длины диагоналей с по-мощью различных уравнений связи для длин ребер в полном графе, однако этот путь еще не реализован (для его применения могут оказаться полезными теоремы о рангах матрицы расстояний [95] и матрицы Кэли-Менгера, [33], [96]). …”
Section: многогранники в многомерных пространствахunclassified