We have studied the self-assembly of hydrophobic nanoparticles at ionic liquid (IL)-water and IL-oil (hexane) interfaces using molecular dynamics (MD) simulations. For the 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)])/water system, the nanoparticles rapidly approached the IL-water interface and equilibrated more into the IL phase although they were initially in the water phase. In contrast, when the nanoparticles were dispersed in the hexane phase, they slowly approached the IL-hexane interface but remained primarily in the hexane phase. Consequently, the IL-hexane interface was rather undisturbed by the nanoparticles whereas the IL-water interface changed significantly in width and morphology to accommodate the presence of the nanoparticles. The equilibrium positions of the nanoparticles were also supported and explained by potential of mean force (PMF) calculations. Interesting ordering and charge distributions were observed at the IL-liquid interfaces. At the IL-hexane interface, the [BMIM] cations preferentially oriented themselves so that they were immersed more in the hexane phase and packed efficiently to reduce steric hindrance. The ordering likely contributed to a heightened IL density and a slightly positive charge at the IL-hexane interface. In contrast, the cations at the IL-water interface were oriented isotropically unless in the presence of nanoparticles, where the cations aligned across the nanoparticle surfaces.