The development of high-performance membrane materials for non-aqueous redox flow batteries (NAqRFBs) could unlock a milestone towards widespread commercialization of the technology. Understanding of transport phenomena through membrane materials requires diagnostic tools able to monitor the concentrations of redox active species. While membrane characterization in aqueous media focused the attention of the scientific community, dedicated efforts for non-aqueous electrolytes remain poorly developed. Here, we develop new methodologies to assess critical membrane properties, namely ion exchange capacity and species transport, applied to NAqRFBs. In the first part, we introduce a method based on 19F-NMR to quantify ion exchange capacity of membranes with hydrophobic anions commonly used in non-aqueous systems (e.g., PF6
- and BF4
-). We find a partial utilization of the ion exchange capacity compared to the values reported using traditional aqueous chemistry ions, possibly limiting the performance of NAqRFB systems. In the second part, we study mass transport with a microelectrode placed on the electrolyte tank. We determine TEMPO crossover rates through membranes by using simple calibration curves that relate steady-state currents at the microelectrode with redox active species concentration. Finally, we show the limitations of this approach in concentrated electrolyte systems, which are more representative of industrial flow battery operation.