Endogenous circadian clocks are synchronized to the 24-h day by external zeitgebers such as daily light and temperature cycles. Bumblebee foragers show diurnal rhythms under daily light:dark cycles and short-period freerunning circadian rhythms in constant light conditions in the laboratory. In contrast, during the continuous light conditions of the arctic summer, they show robust 24-h rhythms in their foraging patterns, meaning that some external zeitgeber must entrain their circadian clocks in the presence of constant light. Although the sun stays above the horizon for weeks during the arctic summer, the light quality, especially in the ultraviolet (UV) range, exhibits pronounced daily changes. Since the photoreceptors and photopigments that synchronize the circadian system of bees are not known, we tested if the circadian clocks of bumblebees (Bombus terrestris) can be entrained by daily cycles in UV light levels. Bumblebee colonies were set up in the laboratory and exposed to 12 h:12 h UV + : UV− cycles in otherwise continuous lighting conditions by placing UV filters on their foraging arenas for 12 h each day. The activity patterns of individual bees were recorded using fully automatic radiofrequency identification (RFID). We found that colonies manipulated in such a way showed synchronized 24-h rhythms, whereas simultaneously tested control colonies with no variation in UV light levels showed free-running rhythms instead. The results of our study show that bumblebee circadian rhythms can indeed be synchronized by daily cycles in ambient light spectral composition. (Author correspondence: r.stanewsky@qmul.ac.uk)