Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calciumdriven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.ivy nanoparticle | ivy adhesive | arabinogalactan protein | adhesion mechanism | reconstructed adhesive A lthough there is a growing interest in exploring mechanisms regulating a variety of adhesive behaviors in the animal kingdom (1-6), the molecular basis allowing creeping plants, such as English ivy (Hedera helix), to generate sufficient adhesive force, aiding in clinging to vertical surfaces, is rarely discussed (Fig. 1A). Previous studies have emphasized mechanical strategies exploited by multiple climbing organs that evolve in plants (7-11). Nevertheless, the role of the glue-like viscous exudates that are observed on the majority of these organs and that cement the plants to the substrates has been less explored (10,12,13). Diverse polysaccharides and glycoproteins, comprising mucilaginous pectins, arabinogalactans, arabinogalactan proteins (AGPs), and many others, have been identified to be the predominant components in these adhesive substances (14-17); however, the molecular mechanisms underlying the high-strength adhesion remain elusive.By means of atomic force microscopy (AFM), bulk spherical organic nanoparticles have been observed in the exudates derived from the root hairs of English ivy (18-20). These proteinaceous nanoparticles are presum...