Rab GTPases represent the largest subfamily of Ras-related small GTPases and regulate membrane trafficking. Vesicular transport is a general mechanism that governs intracellular membrane trafficking along the endocytic and exocytic pathways in all eukaryotic cells. Fusarium graminearum is a filamentous fungus and causes the devastating and economically important head blight of wheat and related species. The mechanism of vesicular transport is not well understood, and little is known about Rab GTPases in F. graminearum. In this study, we systematically characterized all eleven FgRabs by live cell imaging and genetic analysis. We find that FgRab51 and FgRab52 are important for the endocytosis, FgRab7 localizes to the vacuolar membrane and regulates the fusion of vacuoles and autophagosomes, and FgRab8 and FgRab11 are important for polarized growth and/or exocytosis. Furthermore, both endocytic and exocytic FgRabs are required for vegetative growth, conidiogenesis, sexual reproduction, as well as pathogenesis and deoxynivalenol metabolism in F. graminearum. Thus, we conclude that Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in F. graminearum.
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.
Arabinogalactan proteins (AGPs), a superfamily of plant hydroxyproline-rich glycoproteins, are present at cell surfaces. Although precise functions of AGPs remain elusive, they are widely implicated in plant growth and development. A well-characterized classical tomato (Lycopersicon esculentum) AGP containing a glycosylphosphatidylinositol plasma membrane anchor sequence was used here to elucidate functional roles of AGPs. Transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells stably expressing green fluorescent protein (GFP)-LeAGP-1 were plasmolysed and used to localize LeAGP-1 on the plasma membrane and in Hechtian strands. Cytoskeleton disruptors and b-Yariv reagent (which binds and perturbs AGPs) were used to examine the role of LeAGP-1 as a candidate linker protein between the plasma membrane and cytoskeleton. This study used a two-pronged approach. First, BY-2 cells, either wild type or expressing GFP-microtubule (MT)-binding domain, were treated with b-Yariv reagent, and effects on MTs and F-actin were observed. Second, BY-2 cells expressing GFP-LeAGP-1 were treated with amiprophosmethyl and cytochalasin-D to disrupt MTs and F-actin, and effects on LeAGP-1 localization were observed. b-Yariv treatment resulted in terminal cell bulging, puncta formation, and depolymerization/disorganization of MTs, indicating a likely role for AGPs in cortical MT organization. b-Yariv treatment also resulted in the formation of thicker actin filaments, indicating a role for AGPs in actin polymerization. Similarly, amiprophosmethyl and cytochalasin-D treatments resulted in relocalization of LeAGP-1 on Hechtian strands and indicate roles for MTs and F-actin in AGP organization at the cell surface and in Hechtian strands. Collectively, these studies indicate that glycosylphosphatidylinositol-anchored AGPs function to link the plasma membrane to the cytoskeleton.
Laccases (EC 1.10.3.2) are a class of multi-copper oxidases with important industrial values. A basidiomycete strain Cerrena sp. HYB07 with high laccase yield was identified. After cultivation in the shaking flask for 4 days, a maximal activity of 210.8 U mL−1 was attained. A 58.6-kDa laccase (LacA) with 7.2% carbohydrate and a specific activity of 1952.4 U mg−1 was purified. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) was the optimal substrate, with K m and k cat being 93.4 µM and 2468.0 s−1, respectively. LacA was stable at 60°C, pH 5.0 and above, and in organic solvents. Metal ions Na+, K+, Ca2+, Mg2+, Mn2+, Zn2+ enhanced LacA activity, while Fe2+ and Li+ inhibited LacA activity. LacA decolorized structurally different dyes and a real textile effluent. Its gene and cDNA sequences were obtained. Putative cis-acting transcriptional response elements were identified in the promoter region. The high production yield and activity, robustness and dye decolorizing capacity make LacA and Cerrena sp. HYB07 potentially useful for industrial and environmental applications such as textile finishing and wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.