The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. However, little is known about Ctr protein topology, structure, and the mechanisms by which this class of transporters mediates high affinity copper uptake. In this report, we elucidate the topological orientation of the yeast Ctr1 copper transport protein. We show that a series of clustered methionine residues in the hydrophilic extracellular domain and an MXXXM motif in the second transmembrane domain are important for copper uptake but not for protein sorting and delivery to the cell surface. The conversion of these methionine residues to cysteine, by site-directed mutagenesis, strongly suggests that they coordinate to copper during the process of metal transport. Genetic evidence supports an essential role for cooperativity between monomers for the formation of an active Ctr transport complex. Together, these results support a fundamentally conserved mechanism for high affinity copper uptake through the Ctr proteins in yeast and humans.