Molecular docking and molecular dynamics (MD) simulations are used to investigate the interactions of curcumin analogues (CAs) with human cytochrome P450 2 C9 (CYP2C9 or 2 C9) and the conformations of their binding sites. In order to examine conformations of CAs/2 C9 and interaction characteristics of their binding sites, RMSDs, RMSFs, and B-factors are computed, and electrostatic and hydrophobic interactions between CAs and 2 C9 are analyzed and discussed. Results demonstrate that the most CAs studied lie 4~15 Å above the heme of CYP2C9. The presence of CAs makes some residues in bound CYP2C9s become more flexible. In the binding sites of A0/2 C9 and C0/2 C9, the formation of H-bond networks (or CA-water-residue bridges) enhances the interactions between CAs and 2 C9. The stronger inhibitory effects of A0, B0, and C0 on 2 C9 can be ascribed to stronger electrostatic and hydrophobic interactions in the binding sites of CAs/2 C9.