Background
Nematodes of the family Cosmocercidae (Ascaridida: Cosmocercoidea) are mainly parasitic in the digest tract of various amphibians and reptiles worldwide. However, our knowledge of the molecular phylogeny of the Cosmocercidae is still far from comprehensive. The phylogenetic relationships of the Cosmocercidae and the other two families Atractidae and Kathlaniidae in the superfamily Cosmocercoidea, are still under debate. Moreover, the systematic position of some genera in Cosmocercidae remains unclear.
Methods
Nematodes collected from Polypedates megacephalus (Hallowell) (Anura: Rhacophoridae) were identified using morphological methods (light and scanning electron microscopy) and molecular approaches [sequencing and analyzing the small ribosomal DNA (18S), internal transcribed spacer 1 (ITS-1), large ribosomal DNA (28S) and mitochondrial cytochrome c oxidase subunit 1 (cox1) target regions]. Phylogenetic analyses of cosmocercoid nematodes using 18S + 28S sequence data were performed to clarify the phylogenetic relationships of the Cosmocercidae, Atractidae and Kathlaniidae in the Cosmocercoidea, and the systematic position of the genus Aplectana in Cosmocercidae.
Results
Morphological and genetic evidence supported that the nematode specimens collected from P. megacephalus represents a new species of Aplectana (Cosmocercoidea: Cosmocercidae). Our phylogenetic results revealed that the Cosmocercidae is a monophyletic group, but not the basal group in Cosmocercoidea as the traditional classification. The Kathlaniidae is a paraphyletic group, and the subfamily Cruziinae (including only the genus Cruzia) formed a sister relationship to the Cosmocercidae. Phylogenetic analyses also showed that the genus Aplectana has closer relationship to the genus Cosmocerca in the Cosmocercidae.
Conclusions
Our molecular phylogenetic results supported that the subfamily Cruziinae should be moved out from the hitherto-defined family Kathlaniidae and elevated to a separate family, and the genus Cosmocerca has closer relationship to the genus Aplectana in the family Cosmocercidae, Our present study provided the basic molecular phylogenetic framework for the superfamily Cosmocercoidea based on 18S + 28S sequence data for the first time. Moreover, a new species of Aplectana, A. xishuangbannaensis n. sp., was described using an integrative approach.