Endocannabinoids and ceramides have demonstrated growth inhibition, cell death induction and pro-apoptotic activity in cancer research. In the present study, we describe the profiles of two major endocannabinoids, ceramides, free fatty acids and relevant metabolic enzymes in 47 pairs of human colorectal cancer tissues and adjacent non-tumor tissues. Among them, anandamide (AEA) and its metabolite, arachidonic acid (AA), were markedly upregulated in cancer tissues particularly in those with lymphatic metastasis. The levels of C16 and C24 ceramides were significantly elevated in the colorectal tumor tissues, while levels of C18 and C20 ceramides showed opposite trends. Levels of two enzymes participating in the biosynthesis and degradation of AEA, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NPLD) and fatty acid amide hydrolase (FAAH), together with the most abundant ceramide synthases (CerS1, CerS2, CerS5 and CerS6) in the colon were also determined. Quantitative-PCR analysis indicated that the mRNA levels of these enzymes were overexpressed in the tumor tissues. The activities of NPLD and FAAH were also upregulated. In addition, both gene and protein expression levels of cannabinoid receptor 1 (CB1) were elevated but not of CB2. Elevation of AEA and alteration of ceramides (C16, C24, C18, C20) may qualify as potential endogenous biomarkers and novel drug targets for colorectal cancer.
Ascaridoids are among the commonest groups of zooparasitic nematodes (roundworms) and occur in the alimentary canal of all major vertebrate groups, including humans. They have an extremely high diversity and are of major socio-economic importance. However, their evolutionary history remains poorly known. Herein, we performed a comprehensive phylogenetic analysis of the Ascaridoidea. Our results divided the Ascaridoidea into six monophyletic major clades, i.e., the Heterocheilidae, Acanthocheilidae, Anisakidae, Ascarididae, Toxocaridae, and Raphidascarididae, among which the Heterocheilidae, rather than the Acanthocheilidae, represents the sister clade to the remaining ascaridoids. The phylogeny was calibrated using an approach that involves time priors from fossils of the co-evolving hosts, and dates the common ancestor of the Ascaridoidea back to the Early Carboniferous (approximately 360.47-325.27 Ma). The divergence dates and ancestral host types indicated by our study suggest that members of the Ascaridoidea first parasitized terrestrial tetrapods, and subsequently, extended their host range to elasmobranchs and teleosts. We also propose that the fundamental terrestrial-aquatic switches of these nematodes were affected by changes in sea-level during the Triassic to the Early Cretaceous.
Pharmacological blockade of N-acylethanolamine acid amidase (NAAA) activity is an available approach for inflammation and pain control through restoring the ability of endogenous PEA. But the recently reported NAAA inhibitors suffer from the chemical and biological unstable properties, which restrict functions of NAAA inhibition in vivo. It is still unrevealed whether systematic inhibition of NAAA could modulate PEA-mediated pain signalings. Here we reported an oxazolidinone imide compound 3-(6-phenylhexanoyl) oxazolidin-2-one (F96), which potently and selectively inhibited NAAA activity (IC50 = 270 nM). Intraperitoneal (i.p.) injection of F96 (3–30 mg/kg) dose-dependently reduced ear edema and restored PEA levels of ear tissues in 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced ear edema models. Furthermore, F96 inhibited acetic acid-induced writhing and increased spared nerve injury induced tactile allodynia thresholds in a dose-dependent manner. Pharmacological effects of F96 (10 mg/kg, i.p.) on various animal models were abolished in PPAR-α−/− mice, and were prevented by PPAR-α antagonist MK886 but not by canabinoid receptor type 1 (CB1) antagonist Rimonabant nor canabinoid receptor type 2 (CB2) antagonist SR144528. Zebrafish embryos experiments showed better security and lower toxicity for F96 than ibuprofen. These results revealed that F96 might be useful in treating inflammatory and neuropathic pain by NAAA inhibition depending on PPAR-α receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.