A scheme is proposed to solve the structure of incommensurate interfaces, starting from highresolution images of electron microscopy, supplemented by adapted simulation techniques and complemented by theoretical tools. Direct silicon bonding is a way to produce artificial interfaces, in particular incommensurate ones. We focus on a technology-driven tilt grain boundary in silicon. While the Fibonacci sequence, linked to the golden ratio, is a prototype of the quasicrystalline structures, a silver-ratio sequence allows us to analyze this incommensurate interface. The four-fold coordination of the Si atoms is kept at the interface.