Abstract. Theoretical, laboratory, and chamber studies have shown
fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene,
largely due to unimolecular reactions which were previously thought not to
be important under atmospheric conditions. Based on early field
measurements, nearly complete regeneration was hypothesized for a wide range
of tropospheric conditions, including areas such as the rainforest where
slow regeneration of OH radicals is expected due to low concentrations of
nitric oxide (NO). In this work the OH regeneration in isoprene
oxidation is directly quantified for the first time through experiments
covering a wide range of atmospherically relevant NO levels (between 0.15
and 2 ppbv – parts per billion by volume) in the atmospheric simulation
chamber SAPHIR. These conditions cover remote areas partially influenced by
anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in
a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3
higher than explainable in the absence of unimolecular reactions. The
measured radical concentrations were compared to model calculations, and the
best agreement was observed when at least 50 % of the total loss of
isoprene peroxy radicals conformers (weighted by their abundance) occurs via
isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO,
up to 50 % of the OH radicals are regenerated from the products of the 1,6
α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD)
and/or through the fast aldehydic hydrogen shift (rate constant
∼10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy
radicals (di-HPCARP-RO2), depending on their relative yield. The
agreement between all measured and modelled trace gases (hydroxyl,
hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of
methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly
independent of the adopted yield of HPALD and di-HPCARP-RO2 as both
degrade relatively fast (<1 h), forming the OH radical and CO among
other products. Taking into consideration this and earlier isoprene studies,
considerable uncertainties remain on the distribution of oxygenated products,
which affect radical levels and organic aerosol downwind of unpolluted
isoprene-dominated regions.