Single-crystalline perovskite BaZrO 3 submicrometer-sized particles were synthesized using a simple, scaleable molten salt method. In this paper, in addition to a time-dependent particle evolution study, we explored primarily the effects of different experimental processing parameters, such as the identity of the salt, annealing temperatures, overall reaction times, cooling rates, and the chemical nature of the precursor in determining their impact upon the purity, size, shape, and morphology of the as-obtained products. We also discuss the role of additional experimentally controllable factors such as the heating rate applied, the amount of salt used, the molar ratios of precursors involved, and the use of surfactant. By a judicious choice of experimental parameters and conditions, we describe herein a rational means of producing pure products with a reproducible composition and morphology.