Abstract. In the past decade, advances in the speed of commodity CPUs have far out-paced advances in memory latency. Main-memory access is therefore increasingly a performance bottleneck for many computer applications, including database systems. In this article, we use a simple scan test to show the severe impact of this bottleneck. The insights gained are translated into guidelines for database architecture, in terms of both data structures and algorithms. We discuss how vertically fragmented data structures optimize cache performance on sequential data access. We then focus on equijoin, typically a random-access operation, and introduce radix algorithms for partitioned hash-join. The performance of these algorithms is quantified using a detailed analytical model that incorporates memory access cost. Experiments that validate this model were performed on the Monet database system. We obtained exact statistics on events such as TLB misses and L1 and L2 cache misses by using hardware performance counters found in modern CPUs. Using our cost model, we show how the carefully tuned memory access pattern of our radix algorithms makes them perform well, which is confirmed by experimental results.