Solid-phase microextraction (SPME) is a popular sampling technique in which chemical compounds are collected with a sorbent-coated fiber and then desorbed into an analytical instrument such as a liquid or gas chromatograph. Typically, this technique is used to sample the headspace above a solid or liquid sample (headspace SPME), or to directly sample a liquid (immersion SPME). However, this work demonstrates an alternative approach where the sample is totally vaporized (total vaporization SPME or TV-SPME) so that analytes partition directly between the vapor phase and the SPME fiber. The implementation of this technique is demonstrated with polydimethylsiloxane-divinylbenzene (PDMS-DVB) and polyacrylate (PA) coated SPME fibers for the collection of nicotine and its metabolite cotinine in chloroform extracts. The most important method parameters were optimized using a central composite design, and this resulted in an optimal extraction temperature (96 °C), extraction time (60 min), and sample volume (120 μL). In this application, large sample volumes up to 210 μL were analyzed using a volatile solvent such as chloroform at elevated temperatures. The sensitivity of TV-SPME is nearly twice that of liquid injection for cotinine and nearly 6 times higher for nicotine. In addition, increased sampling selectivity of TV-SPME permits detection of both nicotine and cotinine in hair as biomarkers of tobacco use where in the past the detection of cotinine has not been achieved by conventional SPME.