2019
DOI: 10.25165/j.ijabe.20191202.4708
|View full text |Cite
|
Sign up to set email alerts
|

Monitoring model for predicting maize grain moisture at the filling stage using NIRS and a small sample size

Abstract: The change in the maize moisture content during different growth stages is an important indicator to evaluate the growth status of maize. In particular, the moisture content during the grain-filling stage reflects the grain quality and maturity and it can also be used as an important indicator for breeding and seed selection. At present, the drying method is usually used to calculate the moisture content and the dehydration rate at the grain-filling stage, however, it requires large sample size and long test t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 31 publications
0
2
0
1
Order By: Relevance
“…До наступления физиологической спелости он обусловлен аккумуляцией органического вещества в эндосперме и зависит главным образом от температуры воздуха. После физиологической спелости влага теряется вследствие физического испарения, скорость которого находится в сильной обратной зависимости от относительной влажности воздуха и количества осадков (31,37,38). В результате сложного взаимодействия между генотипом и средой наблюдается неустойчивая динамика потери влаги.…”
Section: в условиях северногоunclassified
“…До наступления физиологической спелости он обусловлен аккумуляцией органического вещества в эндосперме и зависит главным образом от температуры воздуха. После физиологической спелости влага теряется вследствие физического испарения, скорость которого находится в сильной обратной зависимости от относительной влажности воздуха и количества осадков (31,37,38). В результате сложного взаимодействия между генотипом и средой наблюдается неустойчивая динамика потери влаги.…”
Section: в условиях северногоunclassified
“…However, there are still many fields, which cannot obtain a large amount of data due to factors, such as high experiment cost and long test cycle. Therefore, it is difficult to apply advanced deep learning algorithm to solve problems [1], such as voice print recognition [2] in multimedia field, disease diagnosis [3] [4] and water analysis [5] in biological and medical field, product sales prediction [6] in the economic field and life prediction of fuel cells [7] in the industrial and military fields. In the process of using machine learning to deal with the above problems, there are problems such as small data volume and data imbalance, etc.…”
Section: Introductionmentioning
confidence: 99%
“…The near infrared spectroscopy (NIRS) is a very efficient method that has been widely used for high-throughput determine various chemical and biochemical structures of agricultural crop ( Washburn et al., 2013 ). For instances, NIRS has been used for high-throughput predicting fiber and nutrient content of dryland cereal cultivars ( Brenna and Berardo, 2004 ; Stubbs et al., 2010 ), phenotyping of moisture and amylose content in maize ( Wang et al., 2019 ; Dong et al., 2021 ), evaluating the composition of carbohydrates in soybean ( Leite et al., 2020 ; Singh et al., 2021 ), detecting biomass of plant root mixtures ( Roumet et al., 2006 ), analyzing available P contents in soils to aid fertilization ( Patzold et al., 2020 ), as well as determining the internal quality and physiological maturity in the fruit ( Cunha et al., 2016 ; de Carvalho et al., 2019 ; Minas et al., 2021 ). In our previous studies, the NIRS has been successfully applied for stalk quality determination ( Wang et al., 2021 ), cell wall features and lignocellulose digestibility characterization in sugarcane ( Li et al., 2021 ; Adnan et al., 2022 ).…”
Section: Introductionmentioning
confidence: 99%