Characterizing individual mobility is critical to understand urban dynamics and to develop high-resolution mobility models. Previously, large-scale trajectory datasets have been used to characterize universal mobility patterns. However, due to the limitations of the underlying datasets, these studies could not investigate how mobility patterns differ over user characteristics among demographic groups. In this study, we analyzed a large-scale Automatic Fare Collection (AFC) dataset of the transit system of Seoul, South Korea and investigated how mobility patterns vary over user characteristics and modal preferences. We identified users’ commuting locations and estimated the statistical distributions required to characterize their spatio-temporal mobility patterns. Our findings show the heterogeneity of mobility patterns across demographic user groups. This result will significantly impact future mobility models based on trajectory datasets.