Let
$p$
be a prime,
$G$
a solvable group and
$P$
a Sylow
$p$
-subgroup of
$G$
. We prove that
$P$
is normal in
$G$
if and only if
$\unicode[STIX]{x1D711}(1)_{p}^{2}$
divides
$|G:\ker (\unicode[STIX]{x1D711})|_{p}$
for all monomial monolithic irreducible
$p$
-Brauer characters
$\unicode[STIX]{x1D711}$
of
$G$
.