Для решения системы линейных алгебраических уравнений методом Монте-Карло используется алгоритм последовательных приближений. Очередная итерация моделируется в виде случайного вектора, математическое ожидание которого совпадает с приближением процесса итерации в форме Зейделя. Выводится система линейных уравнений, которым удовлетворяют взаимные корреляции компонент предельного вектора и корреляции двух последовательных приближений. Доказывается существование и конечность предельных дисперсий случайного вектора решений системы. Библиогр. 7 назв. Табл. 1. Ключевые слова: алгоритм Монте-Карло, метод Зейделя, система линейных алгебраических уравнений. * Работа выполнена при финансовой поддержке РФФИ (грант № 14-01-00271а).