2020
DOI: 10.1108/compel-11-2019-0449
|View full text |Cite
|
Sign up to set email alerts
|

Moore-Penrose pseudo-inverse and artificial neural network modeling in performance prediction of switched reluctance machine

Abstract: Purpose The purpose of this paper is to present the Moore-Penrose pseudoinverse (PI) modeling and compare with artificial neural network (ANN) modeling for switched reluctance machine (SRM) performance. Design/methodology/approach In a design of an SRM, there are a number of parameters that are chosen empirically inside a certain interval, therefore, to find an optimal geometry it is necessary to define a good model for SRM. The proposed modeling uses the Moore-Penrose PI for the resolution of linear systems… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 37 publications
0
0
0
Order By: Relevance