Fitness costs are frequently invoked to explain the presence of genetic variation underlying plant defense across many types of damaging agents. Despite the expectation that costs of resistance are prevalent, however, they have been difficult to detect in nature. To examine the potential that resistance confers a fitness cost, we examined the survival and fitness of genetic lines of the common morning glory, Ipomoea purpurea, that diverged in the level of resistance to the herbicide glyphosate. We planted a large field experiment and assessed survival following herbicide application as well as fitness of the divergent selection lines in the absence of the herbicide. We found that genetic lines selected for increased resistance exhibited lower death compared to control and susceptible lines in the presence of the herbicide, but no evidence that resistant lines produced fewer seeds in the absence of herbicide. However, susceptible lines produced more viable seeds than resistant or control lines, providing some evidence of a fitness cost in terms of seed germination, and thus potential empirical support for the expectation of trait trade‐offs as a consequence of adaptation to novel environments.