The fate of integrated Ri T-DNA rol genes during regeneration via indirect somatic embryogenesis and stability of its effect on morphology and tylophorine content of Ri-transformed plants have been studied in Tylophora indica. Integration and expression of Ri T-DNA genes in transformed embryogenic callus lines derived from transformed root lines, 300 Ri-transformed somatic embryos, and 23 Ri-transformed plant lines were analysed. Fifty root lines studied showed integration and expression of four rol genes of TL-DNA. Spontaneous regeneration via indirect somatic embryogenesis was obtained from root lines that were TL + /TR − . Stable integration and expression of rol genes were observed in root lines, embryogenic callus lines, and the spontaneously induced somatic embryos. Nineteen out of the 23 Ri-transformed plant lines and their clones showed phenotypic and genetic stability over the period of 3 years. Four Ri-transformed plants were morphologically similar to nontransformed plants but showed variation with the integration and expression of the rolA gene and absence of other rol genes. Variant Ri-transformed plant line A 4 28#1-V showed highest tylophorine content (2.93 ± 0.03 mg gDW −1 ) among plant lines studied. The effects of T-DNA genes on growth, morphology, and tylophorine content of the Ri-transformed plants were stable in the long term culture.