The Acochlidia are unique among opisthobranch gastropods in combining extremely high morphological and ecological diversity with modest species diversity. The phylogeny of acochlidians has never been addressed by cladistic means, as their evolution has remained unknown. This study gives a first overview on more than 150 biological and morphological characters that are potentially useful for phylogenetic analysis. Based on 107 characters, a parsimony analysis (PAUP) was performed for all 27 valid acochlidian species together with 11 (plus two) outgroup taxa. The resulting strict consensus tree shows a moderate overall resolution, with at least some bootstrap support for most resolved nodes. The Acochlidia are clearly monophyletic, and originate from an unresolved basal opisthobranch level. The Acochlidia split into the Hedylopsacea (Tantulum (Hedylopsis (Pseudunela (Strubellia ('Acochlidium', 'Palliohedyle'))))) and Microhedylacea (Asperspina (Pontohedyle, 'Parhedyle', 'Microhedyle', (Ganitus, Paraganitus))). The formerly enigmatic Ganitidae, resembling sacoglossan opisthobranchs by having dagger-like rachidian radular teeth, are likely to be highly derived microhedylids. The paraphyly of some of the traditionally recognized family level taxa induced a preliminary reclassification. From the phylogenetic hypothesis obtained, we conclude that the acochlidian ancestor was marine mesopsammic. The colonization of limnic systems occurred twice, independently: first in the Caribbean (with the development of the small interstitial Tantulum elegans), and second in the Indo-Pacific, with a radiation of large-sized benthic acochlidian species. The evolution of extraordinary reproductive features, such as hypodermic impregnation by a complex copulative aparatus in hedylopsaceans, cutaneous insemination via spermatophores in microhedylaceans, and gonochorism in Microhedylidae s.l. (including Ganitidae), is discussed.