In this study, nanocrystalline CoFeCu thin films were electrodeposited at different current densities from baths with natural pH (around 5.2) and containing 20 g/L citrate sodium. The relationship of films structure with soft magnetic properties and electrical resistivity, which are required for new generation magnetic head core, were investigated. SEM, EDS, XRD, TEM, VSM and four probe-point methods were used for characterization of the deposited films. The deposited films exhibited very uniform and homogenous structure with co-axis grains (confirmed by (111) and (110) poles figures and TEM images) throughout the coating. Overall, it was noticed that increasing current density from 1 to 24 mA/cm 2 reduced both grain size (from 63 to 8 nm) and coercivity (from 20 to 1 Oe) of the films. In addition, plotting Log (Hc) versus Log (D 6 ) demonstrated that the coercivity of the films followed ''D 6 law''. Moreover, increasing current density changed phase structures of the films from FCC (Cu)?FCC (Co) to FCC (Co) and then to FCC (Co)