The UspA1 and UspA2 proteins of Moraxella catarrhalis are structurally related, are exposed on the bacterial cell surface, and migrate as very high-molecular-weight complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Previous analysis of uspA1 and uspA2 mutants of M. catarrhalis strain 035E indicated that UspA1 was involved in adherence of this organism to Chang conjunctival epithelial cells in vitro and that expression of UspA2 was essential for resistance of this strain to killing by normal human serum (C. Aebi, E. R. Lafontaine, L. D. Cope, J. L. Latimer, S. R. Lumbley, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 66:3113-3119, 1998). In the present study, isogenic uspA1, uspA2, and uspA1 uspA2 mutations were constructed in three additional M. catarrhalis strains: 012E, TTA37, and 046E. The uspA1 mutant of strain 012E had a decreased ability to attach to Chang cells. However, inactivation of the uspA1 gene in both strain TTA37 and strain 046E did not cause a significant decrease in attachment ability. Inactivation of the uspA2 gene of strain TTA37 did result in a loss of attachment ability. Nucleotide sequence analysis revealed that the predicted protein encoded by the uspA2 genes of both strains TTA37 and 046E had a N-terminal half that resembled the N-terminal half of UspA1 proteins, whereas the C-terminal half of this protein was nearly identical to those of previously characterized UspA2 proteins. The gene encoding this "hybrid" protein was designated uspA2H. PCR-based analysis revealed that approximately 20% of M. catarrhalis strains apparently possess a uspA2H gene instead of a uspA2 gene. The M. catarrhalis uspA1, uspA2, and uspA2H genes were cloned and expressed in Haemophilus influenzae cells, which were used to prove that both the UspA1 and UspA2H proteins can function as adhesins in vitro.Moraxella catarrhalis, an unencapsulated, gram-negative bacterium, can cause disease in both the upper and lower respiratory tracts (32). It has been estimated that approximately 20% of cases of acute bacterial otitis media in infants and young children are caused by this organism (6). M. catarrhalis is also associated with nearly one-third of infectious exacerbations of chronic obstructive pulmonary disease in adults (16). The ability of this organism to cause significant morbidity has resulted in increased efforts to develop an efficacious M. catarrhalis vaccine (35).Outer membrane proteins have received the most attention as possible M. catarrhalis vaccine candidates (9,19,20,31,33,43), and even M. catarrhalis lipooligosaccharide may contain potential vaccine components (15). A few of these outer membrane proteins, especially CopB (OMP B2) (4, 38), OMP CD (24), TbpA and TbpB (28), LbpA and LbpB (12), and UspA (ubiquitous surface protein A or HMW-OMP) (20, 26), which consists of two related proteins, UspA1 and UspA2 (2, 3), have been characterized in some detail. Furthermore, changes in expression of M. catarrhalis outer membrane proteins have been shown to affect the ability of thi...