An [FeIV2(μ-O)2] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C–H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Due to the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe2(μ-O)2] cores. We report here that water or alcohol substrates can activate synthetic [FeIIIFeIV(μ-O)2] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C–H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [FeIIIFeIV(μ-O)2] core, resulting in the formation of a more reactive species with a [X–FeIII–O–FeIV=O] ring-opened structure (1-X, 2-X, X = OH− or OR−). Treatment of 2 with methoxide at −80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 FeIII/S = 2 FeIV] pair. Even at this low temperature, the complex undergoes facile intramolecular C–H bond cleavage to generate formaldehyde, showing that the terminal high-spin FeIV=O unit is capable of oxidizing a C–H bond as strong as 96 kcal mol−1. This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C–H bond (DC-H 81 kcal mol−1). The activation of the [FeIIIFeIV(μ-O)2] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second order rate constant that is 3.6 x 107-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 FeIV=O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [FeIV2(μ-O)2] diamond core of sMMO-Q to selectively attack the strong C–H bond of methane in the presence of weaker C–H bonds of amino acid residues that define the diiron active site pocket.