The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using non-toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.
A new paradigm for oxygen activation is required for enzymes such as methane monooxygenase (MMO), for which catalysis depends on a nonheme diiron center instead of the more familiar Fe-porphyrin cofactor. On the basis of precedents from synthetic diiron complexes, a high-valent Fe2(micro-O)2 diamond core has been proposed as the key oxidizing species for MMO and other nonheme diiron enzymes such as ribonucleotide reductase and fatty acid desaturase. The presence of a single short Fe-O bond (1.77 angstroms) per Fe atom and an Fe-Fe distance of 2.46 angstroms in MMO reaction intermediate Q, obtained from extended x-ray absorption fine structure and Mössbauer analysis, provides spectroscopic evidence that the diiron center in Q has an Fe2IVO2 diamond core.
High-valent iron-oxo species have frequently been invoked in the oxidation of hydrocarbons by both heme and non-heme enzymes. Although a formally Fe(V)=O species, that is, [(Por(*))Fe(IV)=O](+), has been widely accepted as the key oxidant in stereospecific alkane hydroxylation by heme systems, it is not established that such a high-valent state can be accessed by a non-heme ligand environment. Herein we report a systematic study on alkane oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, that is, [Fe(II)(TPA)(CH(3)CN)(2)](2+) (1, TPA = tris(2-pyridylmethyl)amine) and its alpha- and beta-substituted analogues. The reactivity patterns of this family of Fe(II)(TPA) catalysts can be modulated by the electronic and steric properties of the ligand environment, which affects the spin states of a common Fe(III)-OOH intermediate. Such an Fe(III)-peroxo species is high-spin when the TPA ligand has two or three alpha-substituents and is proposed to be directly responsible for the selective C-H bond cleavage of the alkane substrate. The thus-generated alkyl radicals, however, have relatively long lifetimes and are susceptible to radical epimerization and trapping by O(2). On the other hand, 1 and the beta-substituted Fe(II)(TPA) complexes catalyze stereospecific alkane hydroxylation by a mechanism involving both a low-spin Fe(III)-OOH intermediate and an Fe(V)=O species derived from O-O bond heterolysis. We propose that the heterolysis pathway is promoted by two factors: (a) the low-spin iron(III) center which weakens the O-O bond and (b) the binding of an adjacent water ligand that can hydrogen bond to the terminal oxygen of the hydroperoxo group and facilitate the departure of the hydroxide. Evidence for the Fe(V)=O species comes from isotope-labeling studies showing incorporation of (18)O from H(2)(18)O into the alcohol products. (18)O-incorporation occurs by H(2)(18)O binding to the low-spin Fe(III)-OOH intermediate, its conversion to a cis-H(18)O-Fe(V)=O species, and then oxo-hydroxo tautomerization. The relative contributions of the two pathways of this dual-oxidant mechanism are affected by both the electron donating ability of the TPA ligand and the strength of the C-H bond to be broken. These studies thus serve as a synthetic precedent for an Fe(V)=O species in the oxygen activation mechanisms postulated for non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.