Objective. Bimanual humanoid platforms for home assistance are nowadays available, both as academic prototypes and commercially. Although they are usually thought of as daily helpers for non-disabled users, their ability to move around, together with their dexterity, makes them ideal assistive devices for upper-limb disabled persons, too. Indeed, teleoperating a bimanual robotic platform via muscle activation could revolutionize the way stroke survivors, amputees and patients with spinal injuries solve their daily home chores. Moreover, with respect to direct prosthetic control, teleoperation has the advantage of freeing the user from the burden of the prosthesis itself, overpassing several limitations regarding size, weight, or integration, and thus enables a much higher level of functionality. Approach. In this study, nine participants, two of whom suffer from severe upper-limb disabilities, teleoperated a humanoid assistive platform, performing complex bimanual tasks requiring high precision and bilateral arm/hand coordination, simulating home/office chores. A wearable body posture tracker was used for position control of the robotic torso and arms, while interactive machine learning applied to electromyography of the forearms helped the robot to build an increasingly accurate model of the participant’s intent over time. Main results. All participants, irrespective of their disability, were uniformly able to perform the demanded tasks. Completion times, subjective evaluation scores, as well as energy- and time- efficiency show improvement over time on short and long term. Significance. This is the first time a hybrid setup, involving myoeletric and inertial measurements, is used by disabled people to teleoperate a bimanual humanoid robot. The proposed setup, taking advantage of interactive machine learning, is simple, non-invasive, and offers a new assistive solution for disabled people in their home environment. Additionnally, it has the potential of being used in several other applications in which fine humanoid robot control is required.