2023
DOI: 10.3390/s23115064
|View full text |Cite
|
Sign up to set email alerts
|

Motor Imagery Classification Based on EEG Sensing with Visual and Vibrotactile Guidance

Abstract: Motor imagery (MI) is a technique of imagining the performance of a motor task without actually using the muscles. When employed in a brain–computer interface (BCI) supported by electroencephalographic (EEG) sensors, it can be used as a successful method of human–computer interaction. In this paper, the performance of six different classifiers, namely linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and three classifiers from the family of convolutional neural networks (CNN… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 70 publications
0
0
0
Order By: Relevance