Determining the neural factors contributing to compulsive behaviors such as alcohol-use disorders (AUDs) has become a significant focus of current preclinical research. Comparison of phenotypic differences across genetically distinct mouse strains provides one approach to identify molecular and genetic factors contributing to compulsive-like behaviors. Here we examine a rodent assay for punished ethanol self-administration in four widely used inbred strains known to differ on ethanol-related behaviors: C57BL/6J (B6), DBA/2J (D2), 129S1/SvImJ (S1), and BALB/cJ (BALB). Mice were trained in an operant task (FR1) to reliably lever-press for 10% ethanol using a sucrose-fading procedure. Once trained, mice received a punishment session in which lever pressing resulted in alternating ethanol reward and footshock, followed by tests to probe the effects of punishment on ethanol self-administration. Results indicated significant strain differences in training performance and punished attenuation of ethanol self-administration. S1 and BALB showed robust attenuation of ethanol self-administration after punishment, whereas behavior in B6 was attenuated only when the punishment and probe tests were conducted in the same contexts. By contrast, D2 were insensitive to punishment regardless of context, despite receiving more shocks during punishment and exhibiting normal footshock reactivity. Additionally, B6, but not D2, reduced operant self-administration when ethanol was devalued with a bitter tastant. B6 and D2 showed devaluation of sucrose self-administration, and punished suppression of sucrose seeking was context dependent in both the strains. While previous studies have demonstrated avoidance of ethanol in D2, particularly when ethanol is orally available from a bottle, current findings suggest this strain may exhibit heightened compulsive-like self-administration of ethanol, although there are credible alternative explanations of the phenotype of this strain. In sum, these findings offer a foundation for future studies examining the neural and genetic factors underlying AUDs.