The ventilated capsule technique is widely used to measure time‐dependent changes in sweating in humans. However, evaluations of its reliability (consistency) have been restricted to the forearm, despite extensive regional heterogeneity in the sweating response. Given the importance of such information for experimental design, statistical analysis and interpretation, we determined the reliability of local sweat rate at nine sites during whole‐body passive (resting) heating. On three separate occasions, a water‐perfused suit was used to increase and clamp oesophageal temperature 0.6, 1.2 and 1.8°C above baseline in 14 young men [24 (SD 5) years of age], while sweat rate was measured at the forehead, chest, abdomen, biceps, forearm, hand, quadriceps, calf and foot using ventilated capsules (3.8 cm2). Absolute and relative reliability were determined via the coefficient of variation (CV) and intraclass correlation coefficient (ICC), respectively. At low heat strain (0.6°C), almost all sites had acceptable relative reliability (ICC ≥ 0.70) and moderate absolute reliability (CV < 25%). At moderate heat strain (1.2°C), only the abdomen, hand, quadriceps and foot had acceptable relative reliability, whereas the forehead, abdomen, forearm, hand and quadriceps had moderate absolute reliability. At high heat strain (1.8°C), relative reliability was acceptable at the abdomen, quadriceps, calf and foot, whereas the chest, abdomen, forearm, hand, quadriceps, calf and foot had moderate absolute reliability. Our findings indicate that the measurement site and level of heat strain impact the consistency of local sweat rate measured via the ventilated capsule technique, and we demonstrate the possible implications for research design and data interpretation.