Drain tile installation into a native-soil athletic field and subsequent sand topdressing applications are cost-effective alternatives to complete field renovation. However, if cumulative topdressing rates exceed root system development, surface stability may be compromised. The objective of this research was to evaluate the effects of cumulative topdressing, over a compacted sandy loam soil, on the fall wear tolerance and surface shear strength of a kentucky bluegrass (Poa pratensis)–perennial ryegrass (Lolium perenne) stand. Research was initiated in East Lansing, MI, on 10 Apr. 2007. A well-graded, high-sand-content root zone (90.0% sand, 7.0% silt, and 3.0% clay) was topdressed at a 0.25-inch depth [2.0 lb/ft2 (dry weight)] per application, providing cumulative topdressing depths of 0.0, 0.5, 1.0, 1.5, or 2.0 inches applied from 11 July to 15 Aug. 2007. Fall traffic was applied twice weekly to all treatments from 10 Oct. to 3 Nov. 2007. In 2008, topdressing applications and traffic, as described earlier, were repeated on the same experimental plots. Results obtained from this research suggest that the 0.5-inch topdressing depth applied over a 5-week period in the summer will provide improved shoot density and surface shear strength in the subsequent fall. Results also suggest that topdressing rates as thick as 4.0 inches accumulated over a 2-year period will provide increased shoot density, but diminished surface shear strength.