A novel technique to guide a subjects' breathing pattern using a respiratory biofeedback (rBF) “game” to improve respiratory efficiency is presented. The continuously adaptive windowing strategy, a fully automatic and highly efficient free-breathing navigator gated technique, is used to acquire the data as it ensures that all potential navigator acceptance windows are possible. This enables the rBF to be fully adaptable to a subject's respiratory pattern. Images of the thoracic aorta acquired using balanced steady-state free precession with continuously adaptive windowing strategy respiratory motion control, with and without rBF, were compared in 10 healthy subjects. Total scan time was reduced by using rBF. The mean scan time was reduced from 7 min 44 s (463 cardiac cycles, ±127cc) without rBF to 5 min 43 s (380 cardiac cycles, ±118cc) with the use of rBF (P < 0.05). Respiratory efficiency was increased from 45 without rBF to 56 with rBF (P < 0.01). Image quality was the same for both techniques (P = ns). In conclusion, rBF significantly improved respiratory efficiency and reduced acquisition duration without affecting image quality