Background
Sport-related concussions (SRCs) are known to have short-term effects on cognitive processes, which can result in diverse clinical presentations. The long-term effects of SRC and repeated exposure to head impacts that do not result in SRC on specific cognitive health outcomes remain unclear.
Objectives
To synthesize and appraise the evidence base regarding cognitive health in living retired athletes with a history of head-impact exposure or SRC.
Data Sources
A systematic search of the EMBASE, PsycINFO, MEDLINE/PubMed, CINAHL, Cochrane Central Register of Controlled Trials, and Web of Science databases was conducted from inception to April 2018 using common key words and medical subject headings related to 3 components: (1) the participant (eg, retired athlete), (2) the primary outcome measure (eg, cognitive test used), and (3) the secondary outcome measure (eg, history of sport concussion).
Study Selection
Cross-sectional studies of living retired male or female athletes in which at least 1 cognitive test was used as an outcome measure were included. Two reviewers independently screened studies.
Data Extraction
Data extraction was performed using Strengthening the Reporting of Observational Studies in Epidemiology guidelines. Methodologic quality was assessed independently by 2 reviewers using the Downs and Black tool.
Data Synthesis
The search yielded 46 cross-sectional observational studies that were included in a qualitative synthesis. Most included studies (80%, n = 37) were published in the 5 years before our review. A large proportion of these studies (n = 20) included retired American National Football League players. The other research investigated professional, university, high school, and amateur retired athletes participating in sports such as American and Australian football, boxing, field and ice hockey, rugby, and soccer. The total sample consisted of 13 975 participants: 7387 collision-sport athletes, 662 contact-sport athletes, 3346 noncontact-sport athletes, and 2580 participants classified as controls. Compared with control participants or normative data, retired athletes displayed worse performance in 17 of 31 studies (55%) of memory, 6 of 11 studies (55%) of executive function, and 4 of 6 studies (67%) of psychomotor function and increased subjective concerns about cognitive function in 11 of 14 studies (79%). The authors of 13 of 46 investigations (28%) reported a frequency-response relationship, with poorer cognitive outcomes in athletes who had greater levels of exposure to head impacts or concussions. However, these results must be interpreted in light of the lack of methodologic rigor and moderate quality assessment of the included studies.
Conclusions
Evidence of poorer cognitive health among retired athletes with a history of concussion and head-impact exposure is evolving. Our results suggest that a history of SRC may more greatly affect the cognitive domains of memory, executive function, and psychomotor function. Retired athletes appeared to have increased self-reported cognitive difficulties, but the paucity of high-quality, prospective studies limited the conclusions that could be drawn regarding a cause-and-effect relationship between concussion and long-term health outcomes. Future researchers should consider a range of cognitive health outcomes, as well as premorbid ability, in diverse samples of athletes with or without a history of concussion or head-impact exposure to delineate the long-term effects of sport participation on cognitive functioning.