2019 International Research Conference on Smart Computing and Systems Engineering (SCSE) 2019
DOI: 10.23919/scse.2019.8842668
|View full text |Cite
|
Sign up to set email alerts
|

MRI based Glioma segmentation using Deep Learning algorithms

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
10
0
4

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(14 citation statements)
references
References 11 publications
0
10
0
4
Order By: Relevance
“…Cui et al [ 36 ] proposed an automatic semantic segmentation model on the BRATS 2013 dataset, and the Dice score was near 0.80 on the combined high- and low-grade glioma datasets. Kaldera et al [ 37 ] proposed a faster RCNN method and achieved a Dice score of 0.91 on 233 patients' data. These studies suggest that deep networks are full of potential for accurate tumor segmentation in MR images.…”
Section: Discussionmentioning
confidence: 99%
“…Cui et al [ 36 ] proposed an automatic semantic segmentation model on the BRATS 2013 dataset, and the Dice score was near 0.80 on the combined high- and low-grade glioma datasets. Kaldera et al [ 37 ] proposed a faster RCNN method and achieved a Dice score of 0.91 on 233 patients' data. These studies suggest that deep networks are full of potential for accurate tumor segmentation in MR images.…”
Section: Discussionmentioning
confidence: 99%
“…Tümörlerin tespitinde tıbbi görüntüleme teknikleri kullanılmaktadır; ayrıca tıbbi görüntülemenin kanser tipi sınıflandırmasında kullanılan en yaygın ve güvenilir teknik olduğu düşünülmektedir. Bu yöntemin noninvaziv olması bu tekniği daha da önemli kılmaktadır [4] [11][12][13][14] ile ilgili birçok çalışma mevcuttur. Son yıllarda bilgisayar teknolojilerinin gelişmesi ile, görüntüdeki özelliklerin otomatik olarak çıkarıldığı derin öğrenmenin, özelliklerin manuel olarak çıkarıldığı modellerden daha iyi performans göstermesi nedeniyle sınıflama ve segmentasyon işlemlerinde sıklıkla kullanılmaya başlanmıştır [15].…”
Section: Introductionunclassified
“…In the previous work by the authors, a region proposal algorithm is proposed to address the problem of selecting a random number of objects in a single region [21,22]. In the proposed method, instead of searching the entire image for the number of objects, the algorithm searches for objects in several selective areas of the image, while treating each subregion as an independent subimage.…”
Section: Introductionmentioning
confidence: 99%
“…(1) We present a simplified CNN architecture based on a small number of layers and faster R-CNN, for the classification of axial MRI into glioma and meningioma brain tumors and produce a bounding box of the tumor with a 94% of accuracy confidence level [21,22]. One of the key challenges in medical image analysis is the scarcity of the labelled data.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation