SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear. Here, using a novel geometric deep-learning model, we discovered that the antigenic profile of Omicron RBD is distinct from the prior VOCs, featuring reduced antigenicity in its remodeled receptor binding sites (RBS). To substantiate our deep-learning prediction, we immunized mice with different recombinant RBD variants and found that the Omicron's extensive mutations can lead to a drastically attenuated serologic response with limited neutralizing activity in vivo, while the T cell response remains potent. Analyses of serum cross-reactivity and competitive ELISA with epitope-specific nanobodies revealed that the antibody response to Omicron was reduced across RBD epitopes, including both the variable RBS and epitopes without any known VOC mutations. Moreover, computational modeling confirmed that the RBS is highly versatile with a capacity to further decrease antigenicity while retaining efficient receptor binding. Longitudinal analysis showed that this evolutionary trend of decrease in antigenicity was also found in hCoV229E, a common cold coronavirus that has been circulating in humans for decades. Thus, our study provided unprecedented insights into the reduced antibody titers associated with Omicron infection, revealed a possible trajectory of future viral evolution and may inform the vaccine development against future outbreaks.