Caspase-2 is the evolutionary most conserved member of the caspase family and was shown to be involved in genotoxic stress induced apoptosis, control of aneuploidy, and ageing related metabolic changes. However, its role in apoptosis seems redundant due to the observation, that knockout does not inhibit apoptotic signalling exclusively. Instead, knockout of caspase-2 leads to tumor susceptibility in vivo, which led to the assumption, that caspase-2 has non-apoptotic functions and can act as a tumor suppressor. The underlying mechanism of the tumor suppressor activity of caspase-2 has not been clarified so far. Furthermore, caspase-2, has a prominent, and as pro-enzyme exclusive localisation in the nucleus and other subcellular compartments, implicating a distinct and location specific role. In this study, a novel caspase-2 specific substrate, termed p54nrb, was identified. P54nrb is harbouring a caspase-2 specific cleavage site at the aspartate residue D422, and cleavage of p54nrb leads apparently to disruption of its putative DNA binding domain at the C-terminus. P54nrb is a nuclear multifunctional RNA and DNA binding protein, known for roles in transcriptional regulation, DNA unwinding and repair, RNA splicing, and retention of defective RNA. Overexpression of p54nrb has been observed in several human cancers, such as cervix carcinoma, melanoma, and colon carcinoma. Data from this study revealed, that depletion of p54nrb in tumor cell lines results in a loss of resistance to drug induced cell death and to reduced capability of anchorage independent growth, which is functionally equivalent to a reduced tumorigenic potential. Meanwhile, p54nrb depletion alone is not cytotoxic. The investigation of p54nrb dependent gene regulations by high resolution quantitative proteomics uncovered an altering expression of multiple tumorigenic genes. For two of these candidates, the tumorigenic protease cathepsin-Z and the anti-apoptotic gelsolin, p54nrb dependent expression was detected universally in all three investigated tumor cell lines, cervix carcinoma, melanoma, and colon carcinoma. Additionally, a direct interaction of p54nrb with the cathepsin Z and gelsolin encoding DNA, but not with their corresponding mRNA, could be demonstrated. Conjointly, this study unveils a novel mechanistic feature of caspase-2 as a tumor suppressor. The caspase-2—p54nrb axis can orchestrate the levels of several tumorigenic proteins and thereby determine the cell death susceptibility and long-term tumor survival. These findings might be of great value for future therapeutic interventions and for overcoming drug resistance of tumors.