Mulberry (Morus alba) is an economically and ecologically important, widespread woody plant. It has served human beings for over hundreds of years, and it is still widely used in pharmaceuticals, food industry and farming nowadays. Using modern techniques, deeper understanding in classification and conservation resources of mulberry leads to higher-efficiency hybrids among populations. Genetic polymorphisms among 42 mulberry genotypes from seven countries over Asia and South America were detected using 17 inter simple sequence repeat (ISSR) primers. A dendrogram was constructed using the similarity matrix among genotypes and a principal component analysis (PCA) was carried out to further identify and cluster the mulberry genotypes. In the 42 genotypes, 175 distinct bands were displayed, among which 169 were polymorphic bands (96.57%). The polymorphic information content of 17 ISSR primers ranged from 0.2921 to 0.3746 with the mean of 0.3494. And Nei's index and Shanon's information index averaged 0.116 and 0.174, respectively, indicating low diversity of mulberry. For further study, cluster analysis and PCA were carried out and the results were similar. 42 genotypes were grouped, showing some hybridized combinations. Additionally, a connection between mulberry diseases and their genotypes was noted, which indicates possible application for ISSR in studying disease resistance of mulberry.