Mitochondrial genomic mutations are found in a variety of human cancers; however, the frequency of mitochondrial DNA (mtDNA) mutations in coding regions remains poorly defined, and the functional effects of mitochondrial mutations found in primary human cancers are not well described. Using MitoChip, we sequenced the whole mitochondrial genome in 83 head and neck squamous cell carcinomas. Forty-one of 83 (49%) tumors contained mtDNA mutations. Mutations occurred within noncoding (D-loop) and coding regions. A nonrandom distribution of mutations was found throughout the mitochondrial enzyme complex components. Sequencing of margins with dysplasia demonstrated an identical nonconservative mitochondrial mutation (A76T in ND4L) as the tumor, suggesting a role of mtDNA mutation in tumor progression. Analysis of p53 status showed that mtDNA mutations correlated positively with p53 mutations (P < 0.002). To characterize biological function of the mtDNA mutations, we cloned NADH dehydrogenase subunit 2 (ND2) mutants based on primary tumor mutations. Expression of the nuclear-transcribed, mitochondrial-targeted ND2 mutants resulted in increased anchorage-dependent and -independent growth, which was accompanied by increased reactive oxygen species production and an aerobic glycolytic metabolic phenotype with hypoxia-inducible factor (HIF)-1␣ induction that is reversible by ascorbate. Cancerspecific mitochondrial mutations may contribute to development of a malignant phenotype by direct genotoxic effects from increased reactive oxygen species production as well as induction of aerobic glycolysis and growth promotion.p53 ͉ reactive oxygen species ͉ MitoChip
Purpose:The extracellular matrix (ECM) molecule osteopontin is implicated in many pathologic processes, including inflammation, cell proliferation, ECM invasion, tumor progression, and metastasis. The present study evaluated the clinical and biological importance of osteopontin in human lung cancer. Experimental Design and Results: Tissue microarrays derived from non^small cell lung cancer (NSCLC) patients were analyzed immunohistochemically. Osteopontin protein expression was observed in 64.5% (205 of 318) of primary tumors and 75.5% (108 of 143) of lymph node metastases, but in only 27.9% (12 of 43) of normal-appearing bronchial epithelial and pulmonary tissues. Osteopontin expression was associated with tumor growth, tumor staging, and lymph node invasion. In vitro osteopontin enhanced ECM invasion of NSCLC cells, and an osteopontin antibody abolished this effect. We further analyzed osteopontin levels in circulating plasma derived from 158 patients with NSCLC, 54 patients of benign pulmonary disease, and 25 healthy donors, and found that the median osteopontin levels for the three groups were 319.1, 161.6, and 17.9 ng/mL, respectively. Conclusions: Overexpression of osteopontin is common in primary NSCLC and may be important in the development and progression of the cancer. Osteopontin levels in the plasma may serve as a biomarker for diagnosing or monitoring patients with NSCLC.Lung cancer is the leading cause of cancer-related deaths in industrialized countries. It claims >150,000 lives each year in the U.S. alone, exceeding the combined mortality from breast, prostate, and colorectal cancer (1, 2). Despite recent advances in understanding lung cancer biology, the 5-year survival rate for the patients remains <15% (3). For the patients diagnosed with stage IV disease, this figure drops to a mere 1% due to local relapses and distant metastases. Predicting the metastatic behavior of the tumor and eradicating or controlling dissemination of the malignancy remain major clinical challenges to oncologists.Cancer progression depends on an accumulation of metastasis-supporting genetic modifications and physiologic alterations regulated by cell signaling molecules such as extracellular matrix (ECM) proteins. The latter contribute to interaction among cancer cells and endothelial cells, which play a critical role in the development of local invasion and distant metastasis (4, 5). One such ECM protein is osteopontin. Previous research suggests that osteopontin is up-regulated in a variety of cancers, such as breast, gastric, and colorectal cancers (6, 7). Reports also suggest that some highly metastatic cancer cell lines synthesize abundant osteopontin. For example, the metastatic cell Ca2-5-LT1 expresses osteopontin mRNA at a level nine times higher than that expressed by the nonmetastatic parental cell Rama 37 (8). These findings suggest that osteopontin is a key extracellular molecule involved in tumor development and progression. However, it has not been extensively evaluated as such in lung cancer. Evid...
BackgroundEpigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC.Methodology/Principal FindingsWe noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells.Conclusions/SignificanceCoordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.
Purpose: This study aims to investigate the role of the aberrant expression of Transkelolase-like 1 (TKTL1) in head and neck squamous cell carcinoma (HNSCC) tumorigenesis and to characterize TKTL1 contribution to HNSCC tumorigenesis through aerobic glycolysis and HIF1α stabilization.Experimental Design: TKTL1 promoter hypomethylation and mRNA/protein aberrant expression were studied in human HNSCC tumor samples and normal mucosas. Oncogenic functions of TKTL1 were examined in HNSCC cell line panels and tumor xenograft models with TKTL1 expression construct. The metabolite levels of fructose-6-phosphate, glyceraldehydes-3-phosphate, pyruvate, lactate, and the levels of HIF1α protein and its downsteam glycolytic targets were compared between the TKTL1-expressing and vehicle-expressing HNSCC cells. Meanwhile, the effects of HIF1α/glycolytic inhibitors were evaluated on the TKTL1 transfectants.Results: TKTL1 exhibits high frequency of promoter hypomethylation in HNSCC tumors compared with the normal mucosas, correlating with its overexpression in HNSCC. Overexpression of TKTL1 in HNSCC cells promoted cellular proliferation and enhanced tumor growth in vitro and in vivo. Overexpression of TKTL1 increased the production of fructose-6-phosphate and glyceraldehyde-3-phosphate, in turn elevating the production of pyruvate and lactate, resulting in the normoxic stabilization of the malignancy-promoting transcription factor HIF1α and the upregulation of downstream glycolytic enzymes. Notably, the reduction of TKTL1 expression decreased HIF1α accumulation and inhibition with HIF1α and/ or the glycolysis inhibitor could abrogate the growth effects mediated by TKTL1 overexpression.Conclusion: TKTL1 is a novel candidate oncogene that is epigenetically activated by aberrant hypomethlation and contributes to a malignant phenotype through altered glycolytic metabolism and HIF1α accumulation. Clin Cancer Res; 16(3); 857-66. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.