Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
International audienceA recently developed color printing system on glass plates, based on dot-by-dot laser irradiation generating the growth of metallic nanoparticles in a special coating, produces structural colors depending strongly on the illumination and observation configuration. The difficulty for an exhaustive color characterization of the printing technology comes not only from the goniochromaticity of the samples, but also from their very high specularity, to which classical measurement instruments are not adapted. Moreover, as the light-matter interaction relies on a number of optical phenomena (surface plasmon resonance, interferences , diffraction, effects of polarization of light) for which no predictive model is available today, their characterization requires measurement of many printed samples. In this paper, we present a characterization method based on multispec-tral imaging and on spectral prediction for halftone colors that permitted a first gamut estimation in three specific illumination/viewing configurations. Recent progresses in nanotechnologies enable the coloration of glass with interesting visual rendering. This is for example the case of the technology developed by the la-boratoire Hubert Curien, called PICSULP [1], where a coating containing silver [2] is deposited on the glass plate, then irradiated by a laser beam in order to anneal the coating and cluster the metallic ions into metallic nanoparticles (NPs). Goniochromatic col-oration of the glass plate surface is thus obtained thanks to various optical phenomena: the presence of silver NPs generates surface plasmon resonance, therefore wavelength-selective absorption as in stained glass [3]; the organization of the NPs along one plane parallel to the coating-air interface generates interferences as in thin films; the NPs can even be aligned along parallel lines, as shown in Figure 1-a, which produces diffraction effects visible at grazing angles, and also gives to the sample a dichroic spectral behavior , i.e. polarization sensitive colors [4,5]. These optical effects are influenced by several physical parameters: the nanoparticle shape, size and spatial organization, as wel
International audienceA recently developed color printing system on glass plates, based on dot-by-dot laser irradiation generating the growth of metallic nanoparticles in a special coating, produces structural colors depending strongly on the illumination and observation configuration. The difficulty for an exhaustive color characterization of the printing technology comes not only from the goniochromaticity of the samples, but also from their very high specularity, to which classical measurement instruments are not adapted. Moreover, as the light-matter interaction relies on a number of optical phenomena (surface plasmon resonance, interferences , diffraction, effects of polarization of light) for which no predictive model is available today, their characterization requires measurement of many printed samples. In this paper, we present a characterization method based on multispec-tral imaging and on spectral prediction for halftone colors that permitted a first gamut estimation in three specific illumination/viewing configurations. Recent progresses in nanotechnologies enable the coloration of glass with interesting visual rendering. This is for example the case of the technology developed by the la-boratoire Hubert Curien, called PICSULP [1], where a coating containing silver [2] is deposited on the glass plate, then irradiated by a laser beam in order to anneal the coating and cluster the metallic ions into metallic nanoparticles (NPs). Goniochromatic col-oration of the glass plate surface is thus obtained thanks to various optical phenomena: the presence of silver NPs generates surface plasmon resonance, therefore wavelength-selective absorption as in stained glass [3]; the organization of the NPs along one plane parallel to the coating-air interface generates interferences as in thin films; the NPs can even be aligned along parallel lines, as shown in Figure 1-a, which produces diffraction effects visible at grazing angles, and also gives to the sample a dichroic spectral behavior , i.e. polarization sensitive colors [4,5]. These optical effects are influenced by several physical parameters: the nanoparticle shape, size and spatial organization, as wel
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO, we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.