A previous study indicated that the Arctic Oscillation (AO) and Siberian High (SH) are two important drivers for the interannual variation of winter surface air temperature (SAT) over southeast Asia. This study reveals that the impact of the winter SH on the southeast Asian SAT was stable. By contrast, the connection between the winter AO and southeast Asian SAT displays a pronounced interdecadal change around the late-1990s. Significant impact of the winter AO on the southeast Asian SAT can only be detected after the late-1990s. The result shows that change in the impact of the winter AO on southeast Asian SAT was mainly attributed to change in the spatial structure of the AO. Before the late-1990s, significant atmospheric signals related to the winter AO were confined to the North Atlantic region and the atmospheric anomalies over Eurasia were weak. As such, impact of the winter AO on the southeast Asian SAT was weak. By contrast, after the late-1990s, winter AO displays a more zonally symmetric structure, with significant negative sea level pressure (SLP) anomalies over the Arctic, and positive anomalies over mid-latitudes. Specifically, the positive SLP anomalies over East China induce clear northerly wind anomalies over southeast Asia, which lead to negative SAT anomalies there via wind-induced temperature advection. Hence, the winter AO has a significant impact on the southeast Asian SAT after the late-1990s. Further analysis shows that after the late-1990s, hindcast skill of the winter southeast Asian SAT anomalies was enhanced when taking both the winter AO and SH into account.